Responsive periodic mesoporous polydiacetylene/silica nanocomposites.

نویسندگان

  • Huisheng Peng
  • Jing Tang
  • Lu Yang
  • Jiebin Pang
  • Henry S Ashbaugh
  • C Jeffery Brinker
  • Zhengzhong Yang
  • Yunfeng Lu
چکیده

Responsive PMO materials have been synthesized through co-assembly of bridged diacetylenic silsesquioxane and surfactant. The spatially defined polydiacetylenic component, mesoporous network, and the covalent proximity of polydiacetylene to silica endow the PMO with mechanical robustness, reversible chromatic responses, improved thermal stability, and faster responses to chemical stimuli. This research also provides an efficient molecular design and assembly paradigm to fabricate a family of conjugated optoelectronic materials, creating novel platforms for sensors, actuators, and other device applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polydiacetylene/silica nanocomposites with tunable mesostructure and thermochromatism from diacetylenic assembling molecules.

Conjugated polydiacetylene (PDA)/silica nanocomposites with tunable mesostructures and reversible thermochromatism were synthesized through self-directed assembly of diacetylenic silanes. In contrast to the previous studies, where the PDA side chains interacted weakly through noncovalent interactions, the side chains in the present nanocomposites are covalently connected to the inorganic silica...

متن کامل

Magnetic and pH dual-responsive mesoporous silica nanocomposites for effective and low-toxic photodynamic therapy

Nonspecific targeting, large doses and phototoxicity severely hamper the clinical effect of photodynamic therapy (PDT). In this work, superparamagnetic Fe3O4 mesoporous silica nanoparticles grafted by pH-responsive block polymer polyethylene glycol-b-poly(aspartic acid) (PEG-b-PAsp) were fabricated to load the model photosensitizer rose bengal (RB) in the aim of enhancing the efficiency of PDT....

متن کامل

Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas.

Highly ordered mesoporous polymer-silica and carbon-silica nanocomposites with interpenetrating networks have been successfully synthesized by the evaporation-induced triconstituent co-assembly method, wherein soluble resol polymer is used as an organic precursor, prehydrolyzed TEOS is used as an inorganic precursor, and triblock copolymer F127 is used as a template. It is proposed for the firs...

متن کامل

Synthesis of Polymer—Mesoporous Silica Nanocomposites

Polymer nanocomposites show unique properties combining the advantages of the inorganic nanofillers and the organic polymers. The mesoporous silica nanofillers have received much attention due to their ordered structure, high surface area and ease for functionalization of the nanopores. To accommodate macromolecules, the nanopores lead to unusually intimate interactions between the polymer and ...

متن کامل

Facile large-scale synthesis of brain-like mesoporous silica nanocomposites via a selective etching process.

The core-shell structured mesoporous silica nanomaterials (MSNs) are experiencing rapid development in many applications such as heterogeneous catalysis, bio-imaging and drug delivery wherein a large pore volume is desirable. We develop a one-pot method for large-scale synthesis of brain-like mesoporous silica nanocomposites based on the reasonable change of the intrinsic nature of the -Si-O-Si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 128 16  شماره 

صفحات  -

تاریخ انتشار 2006